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An Integral Analogue of Taylor's Series and Its Use 
in Computing Fourier Transforms 

By Thomas J. Osler 

Abstract. In this paper, an integral analogue of Taylor's series 

f(z) = f ', Dof(z o)(z -z o) lo/ P( + 1) dc 

is discussed. D 'f(z) is a fractional derivative of order w. Extensions of this integral are also 
given, one of which is an integral analogue of Lagrange's expansion. These integrals are 
shown to be generalizations of the Fourier integral theorem. Several special cases of these 
integrals are computed, and a table of Fourier transforms emerges. 

1. Introduction. The fractional derivative of order a of the function f(z) with 
respect to g(z), Dc(2)f(z), is a generalization of the familiar derivative daf(z)/(dg(z))a 
to nonintegral values of a. In the author's previous papers on the fractional calculus, 
three distinct features evolved: 

(1) Certain formulas familiar from the elementary calculus were shown to be 
special cases of more general expressions involving fractional derivatives. These 
included Taylor's series [5], Leibniz rule [3], [6], [7], the chain rule [4], and Lagrange's 
expansion [5]. 

(2) Through the fractional calculus, we were able to relate formulas familiar 
from the study of Fourier analysis to the above-mentioned calculus relations. Thus, 
it was shown that the generalized Taylor's series could be viewed as an extension 
of the Fourier series [5], and that the generalized Leibniz rule was an extension of 
Parseval's relation [7]. 

(3) Most of the important special functions can be represented by fractional 
derivatives of elementary functions, such as 

J,(z) = ir-K"2(2z)- Dz2 _-/2(cos z)/z. 

We found that our extensions of calculus formulas, when combined with fractional 
derivative representations for the higher functions, produced interesting series re- 
lations involving the special functions. 

This paper continues our study of the fractional calculus by exposing the three 
features outlined above for certain integrals which are related to Taylor's series and 
Lagrange's expansion. We find it useful to distinguish three special cases: 

Case 1. The expression 

( 1.* 1 ) f( D,l. ,1 f(Z) =zf b -- jz) (z - IOw +Z) dwo 
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is an integral analogue of Taylor's series. Here, y is an arbitrary complex number, 
and z is restricted to the circle Iz - z0l = jz0 - bj. (1.1) is easily suggested by the 
generalized Taylor's series 

J (Z) = aD.2-bz)22.(Z - ZO) 
an+ y 

n--co r(an + y + 1) 

by setting an = on and Axo = a. As a 0+, we see at once that this series is the 
approximating sum in the definition of the Riemann integral for (1.1). The integral 
(1.1) was mentioned in passing by G. H. Hardy [2, p. 56], but no rigorous derivation 
appears in the literature, to the best of the author's knowledge. 

Case 2. Since the natural relation DaDbf(z) = D` bf(z) is valid (with certain 
restrictions on a, b, and f(z)), a simple generalization of (1.1) becomes 

(1.2) D,a_bf(Z) = D r(b+f(z)I z (z - zo)w dw. 
r(w +y?l 

case 3. Our final relation 

(1.3) f(z) = f((w ]Z 2o 0(Z)'+T dw 

is an integral analogue of Lagrange's expansion. Here, 0(z) = (z - zo)q(z) and the 
integral is valid for z on the closed curve I 0(z)l = I 0(b)J. (1.1) is the special case of 
(1.3) in which q(z) =1 (and thus 0(z) z - zo). The truth of (1.3) is suggested at 
once by letting a -- 0+ in the generalized Lagrange's expansion [5] 

(z) _ 
c 

aDD a"+ 
' 

[f(z) 0(z)q(zay ] z_zo (Z) an+ 

74 - co P(ant ? y ? 1 

(1.2) and (1.3) have not, to the best of the author's knowledge, appeared before in 
the literature. 

We demonstrate in Sections 3 and 4 that (1.1) and (1.3) are generalizations of 
the familiar Fourier integral theorem. 

The paper concludes by examining special cases of (1.1), (1.2), and (1.3) in which 
specific functions are chosen for f(z) and 0(z). We find that Fourier transforms of 
the special functions emerge. These are listed in Table 5.1. Most of the entries in 
this table appear to be new. 

2. Fractional Differentiation. In this section, we briefly state our definition 
of fractional differentiation so as to make the paper self-contained. The reader 
unfamiliar with this subject can refer to [3] for a discussion and motivation of the 
following definition. 

Definition 2.1. Let f(z) be analytic in the simply connected region R. Let z = b 
be an interior or boundary point of R. Assume that _f If(z)l jdzj exists for any 
simple closed contour C in R U {bI through b. Then, if a is not a negative integer 
and z is in R, we define the fractional derivative of order a of f(z) with respect to 
z - b to be 

(2.1(a ? 1) () f(t) dt 
(2.1) D>-f(Z) = 27ri Z -I 
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For nonintegral a, the integrand has a branch line which begins at t = z and passes 
through t = b. We define (t - z)a+l to be exp [(a + 1) In (t - z)], where In (t - z) 
is real when t - z is positive. The notation on this integral implies that the contour 
of integration starts at t = b, encloses t = z once in the positive sense, and returns 
to t = b without crossing the branch line or leaving R U {b}. When Re (oa) < 0, 
we can replace this closed contour by a line from b to z, [3], 

D>t(z-b) = r(-)1 f (z t) 

This integral is called the Riemann-Liouville integral when b = 0, and permits us 
to extend the definition of Da to the case where a is a negative integer. 

If we wish to determine the fractional derivative of a specific function, it is con- 
venient to refer to Chapter 13 of [1, Vol. 2] which contains a table of "Riemann- 
Liouville fractional integrals". We note that in our notation the Riemann-Liouville 
fractional integral of order a of the function f(z) is denoted by D- af(z). 

3. Intuitive Motivation and Relation to Fourier Analysis. In the intro- 
duction, we discussed a simple manner in which the integral analogues of Taylor's 
series and Lagrange's expansion are suggested by the author's generalized Taylor's 
and Lagrange's series for fractional derivatives by letting the parameter a -* 0+. 
In this section, we discuss motivation for the integral analogue of Taylor's series 
(1.1) by showing how it evolves formally from the Fourier integral theorem. Simul- 
taneously, we discover that our integral analogue of Taylor's series is, in a certain 
sense, an extension of Fourier's integral theorem. 

In our definition of fractional differentiation (2.1), 

Dwfi - Pr(co + ) I _Z) f(t) dt 
ZJ IZ~- 2ri (t - zo)w + 

choose the contour of integration to be the circle centered at zo passing through the 
origin. We introduce the parameter t on this circle through the relation 

t = Zo + zoe<, . 

Thus, we have 

(3.1) 
z 

+ 1) J__ f(zo + zoe't)etX di. 

Since the l.h.s. of (3.1) is the Fourier transform of the function 

f* = f(zo + zoe' I)1I < 7r 

-0, 1> 7r, 

we have at once from the Fourier integral theorem 

= 
0 

D'f(z)j,., z'e" w 

00?) 
, r (co + I) 

If we call 

(3.2) z = zo +zoe' 9 



452 THOMAS J. OSLER 

this last expression becomes 

(3.3) f(z) f X zf(Z)z (z - zo)o dcv, 

the special case of (1.1) in which y = 0. In the next section, we will derive rigorously 
our most general integral (1.3) through a procedure similar to that outlined above 
for the special integral (3.3). We have selected this special case in order to show 
clearly that our integrals are generalizations of the Fourier integral theorem because 
of the introduction of the complex parameter "z0". Note that each value of zo deter- 
mines a circle (3.2) in the z-plane on which our integral (3.3) converges to f(z). Since, 
in general, we are free to vary zo over some open set in the complex plane, (3.3) 
can represent f(z) for z on an open set (determined by (3.2)). We say that we have 
"extended the Fourier integral theorem into the complex plane"." 

Previously the author demonstrated that the familiar Fourier series 
co 

f*( E & eian' 
n- > f?Gf 

is, in a similar sense, a special case of the formula 

(3.4) f(z) = f(z) (z - ZO) 

and the Parseval's relation 

u*(O)v*(t) d = x 
a 

f U*(t)eian' d.- v*(g)e-inr d- 

27r _r/a n-? . 2r r/a 2,- 7/a 

is a special case of the generalized Leibniz rule 

(3.5) D'u(z)v(z) 
a 

E (y ) Dan 7u(z) D2ft(z). 

Both (3.4) and (3.5) are extensions into the complex plane of familiar formulas from 
Fourier analysis. Thus, we have shown how another formula, the Fourier integral 
theorem, can be extended into the complex plane. 

4. Rigorous Derivations. In this section, we present rigorous derivations 
of (1.1), (1.2), and (1.3), whose validity has already been suggested. The hypothesis 
of the following theorem is nearly identical to that of Theorem 4.1 in [5], which 
discusses the generalized Taylor's series. The proof of this Theorem is nothing more 
than a careful generalization of the formal discussion of the previous section centered 
on the Fourier integral theorem. 

THEOREM. Let 0(z) be a given function suich that (i) the curves C(r)-{ z j j (z)j r} 
are simple and closed for each r such that 0 < r < p, (ii) 0(z) is analytic inside and on 
C(p), and (iii) 0(z) = (z - zo)q(z), zo is inside C(p), and q(z) has no zeros inside C(p). 
Let b - z0 be a fixed point inside C(p). Let 0(z)C = exp (c In 0(z)) denote that branch 
of the function which is continuous and single valued on the region inside C(p) cut by 
the branch line z = z0 + (b - z0)r, 0 < r, such that ln 0(z) is real where 0(z) > 0. 
Let J(z) satisfy the conditions of Definition 2.1 for the existence of Do>, f(z) for { z I z 
inside C(p); but z z b + r exp (i arg (b - z0)), 0 < rl. Then, for arbitrary y and z 
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on the curve C(I 0(b)!), 

(4.1) f (z) z-f bz(z)w(z)q(z) ]+Z 6(z)"'+ do. 
P (CO + ly + 1 

Proof. Since 0(z) is analytic and univalent inside and on a simply connected 
region containing the curve C(I0(b)l), we can describe 0(z) on this curve by 0(z) = 

-0(b)e'?, for -7r < r < ir. Define 

= f(Ol(--0(b)e2?))e-2?Y, for-7 < v < 7, 

= 0, otherwise. 

The Fourier integral theorem is valid for f(t), since 

f If(v)t dA = f It(0l( _0(b)ed'))e-iy I dD. 

This integral is finite, since we require the possible singularity of f(z) at z = b to be 
such that f If(z)l idzl exists when the contour passes through z = b in the Definition 
2.1. Applying the Fourier integral theorem to f*(P), we get 

f *(= 42 f e f *(4O)e d dco, 
2r co co_ 

-i? ~ ~~ _ i@ (b))O'+' f (z)e r( + + i ) 

F(o + y + 1) fT f(Ol(-0(b))ei+)i(-0(b))e2o do dco 
1. 22ri J_ (-0(b))w+y+lei0(W+7+l) J 

r (z) zr:1) rP(c + y + 1) Zo +) f(t)O'(t) dt 
(Z = - 1 do. 

Z J_co r(co + Py + 1) 27ri (t - zo)o+y+lq(t)w+7+l 

Comparing this last expression with the definition of fractional differentiation (2.1), 
we have (4.1) at once. 

COROLLARY. Let f(z) = (z - b)P g(z), where g(z) is analytic in the circular region 
R = {z I IZ- b < r}. Let z0 C: R be such that the circle C defined by C = {I Iz -zl 

= zb-zl } is contained in R. Let p > -1 and p - a > -1. Then 

Da _b - f Dzib_?t(z 
- b 

fz).zjz - (z++) dw 

for z on C. 
Proof. The conclusion follows at once if we set 6(z) = z - z0 in the Theorem 

(thus obtaining (1.1)), and replace f(z) by D_b f(z), provided 

(4.2) D2 cb (DC' bf(Z)) = DZa_b+0 -f(z). 

To see that (4.2) is true, we expand f(z) in powers, for z C R, 

f(z) = , a.(z - 
n=O 

Since p > -1, we can compute 
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Da f(z) = E (p +- a + I)a+(z - 
n-0 r(- a + t + 1 

The validity of this termwise differentiation is well known [3]. We note in particular 
that since p and a are restricted in the hypothesis by p > -1, and p - a > -1, 
(i) both gamma functions appearing in the last expression are defined, and (ii) D' b f(z) 

can be differentiated fractionally. 

D +:y(D bf(Z)) 
= F(p + a + l)an(z- a 

z D - a,_ i f(z). 

Thus, (4.2) is valid and the Corollary is proved. 
Having derived our general integrals, we proceed next to an examination of 

several special examples. 

5. Computation of Fourier Transforms. We conclude our discussion of 
the integral analogue of Taylor's series by selecting specific functions for f(z), q(z), 
0(z), and taking b = 0 in the three expressions (1.1), (1.2), and (1.3). The fractional 
derivatives encountered are computed by referring to the Table of Fractional Integrals 
(Riemann-Liouville integrals) in Chapter 13.1 of [1, Vol. 2, pp. 185-200]. As an 
example, we set f(z) = zP in (l.1) and obtain 

= fr F+ 1 (z - z ( ) 
w 

dc. 

Using formula 7 in the above mentioned table, we see that 

D ly r F(p + l)zo Y 
XZZo -r(p - + I) 

for Re (p) > - 1. A little simplification reveals that 

(Z/Zo) = fz ( + )(z/zo) - 1)w+ dco, 

where 

{a\ r(a +l ) 

b r(a - b + l)r(b + 1) 

Since this integral is valid only for z on the circle Iz - z0l = jzol, we set z z0 + zoe&', 

for 1j1 < ir. We then have 

f|' ( P )ei+ dw = (I + e'i)o, 101 < 7r, 

-0, 1j1 >7r. 

(We recall from the proof of the Theorem that our integral is zero for 101 > r.) 

Since -y is an arbitrary complex number, we can write an equivalent expression for 

this last integral by setting y = 0, and replacing the path of integration by a horizontal 
line through i77 (q any real number). We obtain 
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(5.1) co+ ?P -ieX dw (1 + e-')P, 101 < 7r, 

= , 10 I >7r. 

Thus we see that our integral analogue of Taylor's series is of value in computing 
Fourier transforms. 

Table 5.1 lists the results of repeating the computation just performed with other 
functions. The second colunn lists the formula from Chapter 13.1 of [1, Vol. 2] 
used to compute the fractional derivatives encountered. Entries 1 through 18 in 
Table 5.1 are special cases of (1.1), entries 19 through 23 are special cases of (1.2), 
while entries 24 and 25 are derived from (1.3). The notation for the special functions 
is that of Erdelyi et al. [1]. 

Each of the Fourier transformations in Table 5.1 can also be expressed as an 
infinite sum. We know from [5] that in the r.h.s. of (1.1), (1.2), and (1.3) we can 
replace 

f by E , w by an, and dw by a, for O < a <1. 
co n- |-X 

This means that the entries in the last column of Table 5.1 can be viewed not only 
as the Fourier transforms of the corresponding values of f(w), but also as 

E f(an + ,y)e- (Gln +t) a, 
n-c 

where 0 < a ? 1, and y is an arbitrary complex number. 
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